信息门户     院内导航      土木校友     书记信箱     院长信箱     联系我们     English
金沙集团wwW3354CC
热点新闻
2024-10-23
激情如焰,军旗飘扬;蓬勃少年,淬火成钢。军训正当时,中南...
最新公告
2024-10-17
    根据《金沙集团wwW3354CC2025年博士研究生优秀生源快速响应计...
站内搜索
学术报告
当前位置: 金沙集团wwW3354CC >> 学术报告 >> 正文

Modeling hydration kinetics, microstructure, and transport properties of contemporary concrete

发布时间:2017-12-21    浏览次数:


报告题目:Modeling hydration kinetics, microstructure, and transport properties of contemporary concrete
报 告 人:Dr. Hongyan Ma 助理教授 密苏里科学技术大学
主 请 人:
时  间:2017年12月25日(周一)上午10:00~12:00
地  点:中南大学铁道校区世纪楼14楼会议室

Dr. Hongyan Ma is an assistant professor of civil engineering in Missouri University of Science and Technology. He received his PhD in Civil Engineering from the Hong Kong University of Science and Technology in 2013. Before joining Missouri S&T in October 2015, he worked as a Post-doctoral Fellow in HKUST for two and a half years. His Research interests include phase change functional materials, novel binder materials hydration kinetics of cementitious materials, etc. Dr. Ma has published over

Abstract:

To reduce the carbon emission and achieve high-performance, contemporary concrete normally employs multi-component cementitious materials as the binder. This means that supplementary cementitious materials, e.g. fly ash, ground granulated blast-furnace slag and silica fume, are used to partially replace portland cement in the mix proportion of concrete. This makes the hydration reactions and microstructure more complicated, and brings difficulties to the prediction of properties. In this talk, the speaker will present his study on quantitative characterization of the hydration kinetics of binary cementitious materials. Computer models have been developed based on the kinetics to simulate the microstructure of concrete at different scales. How to use these models to simulate the microstructures of the hydration products layers, hardened cement paste and interfacial transition zone will be introduced. A multi-scale scheme for the computation of transport properties, developed based on the microstructural representation and a modified random walk algorithm, will also be described. In addition, the speaker will also briefly introduce his on-going work in smart and functional materials and systems.